DISTORTION OF THE DOUBLE BOND IN ETHYLENE Leo Radom, John A. Pople and William L. Mock Department of Chemistry Carnegie-Mellon University Pittsburgh, Pennsylvania 15213, UBA

(Received in USA 30 November 1971; received in UK for publication 6 January 1972)

In the preceding letter,¹ one of us has discussed reactive consequences of conjectured distortions of double bonds due to two types of torsional strain (steric repulsion between cis substituents or trans linkage). In this note we examine such distortions in ethylene a5 a simple model system by prescribing a non-planar HCCR arrangement for two hydrogens (either cis or trans) and determining the consequent positions of the other two. This problem can be approached quantitatively either by molecular orbital theory or (for small displacements) by using the vibrational force field for ethylene in its equilibrium form.

ı,

In the molecular orbital studies, we have used an ab initio method with the STO-3C minimal basis.' The results **are** given in Table 1. The equilibrium geometry and energy of ethylene (I) with this method have been reported previously.³ In structure II, a pure torsional motion is considered in which each CH_2 is rotated 10° out of the original plane $(angles $\theta, \phi)$ and all remaining geometrical parameters are reoptimalized. The energy is then$ 7.1 kcal/mol above that of I. In structure III, cis hydrogens H_A are distorted out of the original plane by 10° (θ) and the other hydrogens H_g allowed to relax to lowest energy positions. They are found to distort slightly on the same side of the plane as the H_A attached to the same carbon (angle ϕ) rather than on the opposite side as indicated by the simple torsional model II. On relaxation from II to III, the strain energy is reduced to 2.5 kcal/mol. Finally, in structure IV, <u>trans</u> hydrogens H_A are distorted by 10° as shown (θ) and the other <u>trans</u> pair H_R are allowed to relax (φ). Again, all displacements are on the same side of the original plane and the strain energy (3.0 kcal/mol) is reduced from its value in II.

Similar conclusions may be drawn from the out-of-plane vibrational frequencies of ethylene. We designate v_A as the twisting frequency $(a_{11}^{})$ and $v_A^{}$ and $v_B^{}$ as the CH₂ wagging frequencies (b $_{\rm 1u}$ and b $_{\rm 2g}$ respectively) appropriate for infinite carbon mass. It can be shown in the harmonic approximation and in the limit of small displacements that, if θ is fixed and ϕ is chosen to minimize the energy, then

$$
\phi/\theta \text{ (III)} = [v_4^2 - (v_8^1)^2]/[v_4^2 + (v_8^1)^2]
$$

$$
\phi/\theta \text{ (IV)} = [v_4^2 - (v_7^1)^2]/[v_4^2 + (v_7^1)^2]
$$

Using $v_4 = 1023$ cm⁻¹, $v_7^1 = 878$ cm⁻¹ and $v_8^1 = 752$ cm⁻¹ (derived from the experimental frequencies⁴ v_A , v_7 and v_8) we obtain ϕ/θ = +0.30, +0.15 for III and IV respectively. For pure torsion (II), ϕ/θ would be -1; $\phi/\theta = 0$ corresponds to the hydrogens H_g (in III and IV) remaining in the original ethylene plane. The positive ϕ/θ ratios calculated from the vibrational frequencies indicate displacements in the directions shown in III and IV and are quite close to the theoretical values (+0.33, +0.20) from Table I.

 θ = prescribed (dihedral) angular distortion or V -h_A bonds

 ϕ = resultant (dihedral) angular distortion of the C-H_B bonds (from the ethylene plane). .
م

 $\ddot{}$

Energy calculated relative to planar ethylene. $\ddot{\cdot}$

d. From ref. 3

e. Constrained value because pure torsion considered.

In summary, both molecular orbital calculations and the analysis of observed vibrational frequencies indicate that cis or trans out-of-plane deformations in ethylene are not pure torsions; they are accompanied by significant bending, and hence pyramidalization, of the bonds at the carbon atoms. Such distortions are likely to have interesting stereochemical consequences. $^{\mathrm{1}}$

References

1. W. L. Mock, Tetrahedron Letters, preceding communication.

- 2. W. J. Hehre, R. F. Stewart and J. A. Pople, J.Chem.Phys., 51, 2657 (1969).
- 3. W. A. Lathan, W. J. Hehre and J. A. Pople, J.Amer.Chem.Soc., 93, SO8 (1971).
- 4. T. S. Shimanouchi, "Tables of Molecular Vibrational Frequencies", NSRDS-NBS 6, National Bureau of Standards, Washington, D.C., 1967.